måndag 15 december 2008

Note 2 on light absorption

I've been thinking more about this. Of course, the electron is only receptive to a certain wavelength of photons. If I am thinking about this correctly and the information I have is sufficient, then an electron should only be able to absorb a photon if it can jump to a higher energy state. This is determined by how large the nucleus is and how many other electrons there are in its vicinity. The wavelength that the electron can absorb is equal to the energy jump that the electron can make. The electron does not absorb other wavelengths because they do not correspond to a possible energy state.

My initial question was a bit unreasonable. I assumed that electrons are very small particles that move at the speed of light. That's why I thought it unlikely that they should collide with an electron. But I don't know any of those things. I know from experience that anything that is perceivable as a particle is not a point. And I know that electrons have several properties. If the size of an electron can be measured, it is because something can be said about the range of those properties.

But that does not necessarily mean that I can imagine the electron to be a weather balloon spinning around the Earth at the speed of light and say something about the probability that a weather balloon-sized projectile from outer space should collide with it.

In fact it seems much more unlikely to me that the electron should have something resembling a shell or a solid internal structure that forces it to keep its shape. I have made the assumption that the classical size of the electron concerns free electrons. But perhaps the properties of the electron spread out differently when they are close by a nucleus? If the reason for this is electromagnetic it shouldn't be too hard do demonstrate that. If it is not electromagnetic, then it is even more intriguing.

So, I am about to suggest to myself that the probability that an electron should collide with an photon may be increased while spinning around a nucleus on account of the electron being squished and having a larger receptive "surface" area. Also that free electrons do not absorb light at all. I really should get to trying to calculate the probabilities for these different scenarios. Maybe I'm already wasting my time (perhaps there is nothing wrong with the weather baloon-model after all). Where does the range of the forces in play come in?

Note 1 on light absorption

It seems unlikely that a photon could strike an electron spinning around a nucleus. At what point is the photon absorbed? Does it even make sense to say that it is? Is there an attractive force between the photon and electron that makes it more probable for them to merge? What would the range and magnitude of that force be? Why do they split, and when?

torsdag 27 november 2008

Waking

As the music stops and the room turns dark, I realize that I am no longer asleep. I hear my mouth hiss a curse word and a moment later the new day dawns upon me.

Another day of chores. You need to drink or you'll go mad of thirst, then die; you need to piss or you'll burst. Those are given, acceptable. But then you are told that you need to prove that you know the difference between a king and a prime minister, and recognize your right to put a fucking piece of paper in a little box every four years, or they won't let you have a job, and they won't let you study what you want to study.

In fact, they won't let you do your things on your terms, not simply because they are unsure weather they will benefit from it in the end, but because then there would be no convention, and without that, no pretend wall to lean against. They would panic.

The world is only fucked up for one reason. It's because the majority of the population have no dreams. Can make no distinction between necessities and stupidities. Are too thick to accept that our great grandmother was a monkey-like animal.

If they would accept that they are monkeys maybe they would stop acting like ants.